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Ecological dynamics

Interactions of organisms in natural environments - pretty
complicated.

To understand some facet of an ecosystem, we can use
mathematical models.

Objective: A good model is simple (abstracts away irrelevant
detail) but not too simple (captures phenomena of interest).

First step: Know what you want to model, and what you
don’t!
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Predators and prey

Start simple! Build the simplest possible model before
worrying about elaborations.

For us: One predator species, one prey.

We’ll investigate two possible models:

Ordinary differential equation model: Track only population
sizes that evolve according to an ODE.

Discrete dynamic model: Explicitly simulate a number of
organisms moving, predating, reproducting, etc.

Both can be understood as types of dynamical systems.
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Dynamical systems

For our purposes, a state space X is a finite collection of state
variables x = (xi)

M
i=1, each taking values in a (discrete or

continuous) domain S (i.e. X = SM ).

Dynamical systems are functions on a state space which
change with time t ∈ T . The time domain T may be
continuous (T = R) or discrete (T = N).

A dynamical system on this state space evolves according to
an evolution function Φ : X × T → X obeying certain
properties. See e.g. Wikipedia for the full definition.

Important specific examples include autonomous ODEs,
autonomous difference equations, and cellular automata.
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Ordinary differential equations

Continuous-time, continuous-space dynamical systems form a
subset of ordinary differential equations. In this case,
X = RM , T = R, and the state variables evolve as a function
x(t) in RM satisfying the ODE

ẋ = F (x)

x(0) = x0

for a continuous (or better) function F and initial state x0.

This ODE is autonomous since F does not depend on t.
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Ecological ODEs

ODEs are most easily applied to modeling statistics of
ecological populations.

Example: Track population sizes, no other details of animal
populations.

We will consider a two-population model, keeping track of two
population sizes: the Lotka-Volterra model.

This is simple and analytically tractable, but abstracts heavily
away from actual ecology.
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Lotka-Volterra history

First developed by Vito Volterra ca. 1926 to explain the
variances in fish catches in the Adriatic Sea.

Four important model assumptions:

The prey population grows exponentially in the absence of
predation.
The predator population decreases exponentially in the absence
of prey.
Predators reduce prey population growth rate, proportional to
both the predator and prey populations.
Prey increases the predator population growth rate,
proportional to both the predator and prey populations.
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Lotka-Volterra equation

Two state variables (x, y) ∈ R2. Prey population is x,
Predator population is y.

Four parameters: α - prey growth rate. β - prey predation
effect. γ - predator population decay rate. δ - predator
predation effect.

Lotka-Volterra equation (LVE): Given initial x0 and y0, x(t)
and y(t) satisfy

dx

dt
= αx− βxy

dy

dt
= δxy − γy.
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Lotka-Volterra equation

One can use the various tools of dynamical systems theory to
analyze the behavior of x(t) and y(t). Spoiler: They oscillate,
or y(t)→ 0 and x(t) grows unboundedly, or both populations
go to 0.

More important for mathematical modeling is the ability to
numerically solve the equations. LVE generalizations can
remain numerically solvable even when not analytically
tractable (more effects, more species, etc.).
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Solving LVE numerically

Numerical ODE solvers are a fantastically useful set of tools
available for most programming languages.

For an arbitrary ODE, numerical simulation may be extremely
difficult. There is tons of literature on the ways to efficiently
numerically solve different classes of ODEs.

For the M3C/MCM, knowing how to use these tools is crucial
to building an ODE model.

Model example: Solving LVE using ode45 and MATLAB.
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And now for a

- MATLAB break -
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ODE model weaknesses

List some!
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Discrete modeling approaches

We can revisit the way we model predator-prey interactions,
and simulate the organisms instead of tracking population
statistics.

ODE models look at dynamics in a low-dimensional state
space (in the LVE case, R×R)

Idea: Let the state space correspond to a high-dimensional
physical space (sorta).

States are discrete objects in physical space (sorta).

Discrete time corresponding to iterative state updates.

Simplest approach here: cellular automata (CA).
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Cellular automata

Underlying state space X is a grid of M spatial “cells”
x = {xi}Mi=1 (though other spatial graphs work, too).

The possible states are a small, finite set S, e.g. S = {0, 1},
S = {red, blue, green}, S = {fox, rabbit}.
Time variable t ∈ T = N.

State evolution can be defined by a discrete difference
equation, but it is often useful to use a transition map instead.
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Cellular automata

Transition maps: in general,

x(t+ 1) = F (x(t)),

where the transition map F is a function (deterministic CA)
or a stochastic process (stochastic CA) taking values in S.

Commonly, xi(t+ 1) depends only on xi(t) and xj(t) for xj in
a neighborhood N(xi) of xi.

Figure: Two common neighborhoods; (a) Von Neumann and (b) Moore.
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A predator-prey CA model

Assumptions:

1. Two “animals”: fox (predator) and rabbit (prey).

2. Foxes can move, die, eat, and reproduce with some
probabilities.

3. Rabbits can move, die, and reproduce with some probabilities.

Setup:

State space is an N ×N grid.

States are empty (E), fox, (F ), rabbit (R).

The transition map is stochastic and best described
algorithmically, using Moore neighborhoods.
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The transition map

Adapted from Hawick & Scogings, 2010

For each time step t+ 1
For each cell x (chosen in random order)
Choose y in neighborhood N(x) at random
If ut(x) = F and ut(y) = R
ut+1(x) = E, ut+1(y) = F with probability εf (fox eats rabbit)

Else if ut(x) = R and ut(y) = F
ut+1(x) = F , ut+1(y) = E with probability εr (rabbit eaten by fox)

Else if ut(x) = F [R] and ut(y) = E
ut+1(x) = E with probability δf [δr] (die)
ut+1(x) = F [R], ut+1(y) = F [R] with probability ρf [ρr] (reproduce)
ut+1(x) = E, ut+1(y) = F [R] with probability µf [µr]. (move)
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A predator-prey CA model

Things to note

The mathematical formalism is instructive in general, but an
algorithmic description is more useful for most models.

Lots of parameters! εf , εr for eating, δf , δr for dying, ρf , ρr
for reproduction, µf , µr for moving.

Parameter values dictate system dynamics. Extinction of one
or both species, or cyclic population growth and decline (a la
Lotka-Volterra) are all possible.
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(Start simulation now)
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Model strengths and weaknesses

Strengths:

Captures more aspects of population dynamics than
Lotka-Volterra.

CA’s allow simple, well-chosen rules to generate complex
behaviors.

Easy to program.

Large numbers of parameters mean behavior can be tailored
to known data.

Easy to modify for better model fidelity.
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Model strengths and weaknesses

Weaknesses:

Still fails to capture many aspects of predator-prey dynamics.

High-dimensional state spaces mean analytic results are
difficult to produce.

Simulation via cellular automata is usually inductive rather
than deductive.

May be computationally intractable for large domains.
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Elaborations on this model

Instead of a grid, consider an automaton on a general graph,
for better spatial fidelity.

Create a more complicated food web by adding additional
possible CA states.

Investigate agent-based models instead of CA models.

Rules can be made to vary in space and/or time.
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And now...

Contest Tips 1
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Contest necessities

Everyone should have a computer to work on.

Look for a (reasonably) comfortable working space ahead of
time.

Software to write up your solution (LaTeX)

A programming language at least one (preferably two)
teammates can use.

Be able to learn, quickly!
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Suggested timeline

Before contest begins: Coordinate! Know where you’ll
meet, exchange email addresses and phone numbers. Know
when teammates won’t be available

Friday: Problem is put online at 5PM. Time for research. Do
as much background research on the problem as you can.
Start outlining at least two possible modeling approaches.

Saturday: Keep doing background research. Choose a
modeling approach, start programming an implementation.
Start writing. Suggested: 2 working on the model, 1 writing.

Sunday: Both implementation and writing should be in full
swing. By Sunday night, 2 people should be writing. Don’t go
to sleep.

Monday: Solution is due at 10AM sharp. Plan to finish by
9AM.
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Solution paper structure

Abstract

Title page, table of contents

Problem description

Model description (including proposed solution)

Model assumptions

Results

Model strengths and weaknesses

Conclusion

Code appendix

Works cited
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Finding and using documents

Obvious starting places: Google, Google Scholar. Research
papers > random websites.

http://www.lib.umd.edu/ may have access to papers you
can’t get on Google Scholar.

Investigate references in papers you’ve already found.

Google Scholar also lets you see who has cited a given paper
(super helpful).

Keep a running bibliography, even of papers you aren’t sure
you’ll use. You can trim it at the end.
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Finding and using software

You’ll likely need new software, or software libraries during the
competition.

Use existing code when possible. Don’t write your own unless
you have to!

Finding and using new software/code means knowing how to
search effectively.

Look for documentation or help pages.
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